МЕТОДИЧЕСКАЯ РАЗРАБОТКА УРОКА

«Глаз как оптическая система. Дефекты зрения. Очки» 8 класс

Цели урока:

Образовательные: рассмотреть строение и свойства глаза, работу глаза как оптической системы, объяснить дефекты зрения, возможную профилактику и коррекцию этих дефектов.

Развивающие: способствовать формированию познавательного интереса, интеллектуальных и экспериментальных умений и навыков, показать применимость законов физики к анализу живых систем, интегрировать и обобщать знания из различных областей знаний; формировать культуру бережного обращения с глазами.

Воспитательная: сформировать умение работать в коллективе, адекватно оценивать свои знания, возможности, развивать чувство уважения и самоуважения, толерантности, умения вести диалог, обеспечивать паритет здоровья.

Задачи:

- 1. поиск наиболее эффективных способов организации деятельности учащихся при изучении строения и функций глаза;
- 2. формирование глубоких и прочных компетенций по физике, биологии в изучаемом вопросе;
 - 3. создание условий для интеллектуального развития детей;
- 4. создать условия для формирования умения анализировать различные подходы в решении одного и того же вопроса.

Оборудование: модель оптической системы глаза человека, раздаточный материал для проведения практической работы, тестовые задания.

ТСО: ПК, мультимедийный проектор, презентация.

Тип урока: развивающий урок изучения нового материала с элементами практической работы.

Компетенции, на формирование которых направлен урок:

- ценностно-смысловые способность видеть и понимать окружающий мир;
- общекультурные освоение учеником научной картины мира;
- учебно-познавательные умение отличать факты от домыслов;
- коммуникативные навыки работы в группе, владение различными социальными ролями в коллективе;
- компетенции личностного самосовершенствования культуры мышления и поведения, навыков здоровьесбережения.

Предполагаемые результаты:

- личностные воспринимать ценность учебного процесса как интеллектуального труда и познания нового; знание здоровьесберегающих технологий;
- **метапредметные** овладение составляющими исследовательской деятельности, наблюдать, делать выводы и заключения, умение планировать, прогнозировать, оценивать свои действия;
- предметные иметь представление об анатомическом строении глаза, изучить механизм работы оптической системы глаза, объяснять выявленные закономерности.

Формы организации учебной деятельности: фронтальная, индивидуальная, групповая. **Методы обучения**: наглядно-иллюстративный, частично-поисковый, групповой.

План урока:

- 1. Введение: роль зрения в жизни человека.
- 2. Строение глаза.
- 3. Глаз как оптическая система.
- 5. Основные нарушения зрения: виды, причины, коррекция.
- 4. Возможности зрения человека и животных.
- 6 Заключение

Последовательность отдельных этапов урока.

- I. Мобилизующий этап 2 мин.
- II. Этап постановки целей и задач урока 3 мин.
- III. Этап получения новых знаний 26 мин.
- IV. Этап обобщения и закрепления нового материала 12 мин.
- V. Рефлексия деятельности- 2 мин.

Всего – 45 мин.

Мобилизующий этап

Глаза — самый ценный и удивительный дар природы. В них отражаются все наши чувства: радость, страдание, равнодушие, любовь и ненависть. Глаза являются не только зеркалом души, но и как бы зеркалом общего состояния здоровья. Это самый важный орган чувств и поэтому они заслуживают исключительного внимания. (Cлайд I)

Глаза... Многие ли из нас действительно сознают ту роль, какую глаза играют в нашей повседневной жизни, и многие ли знают, что и как надо делать для того, чтобы глаза наши были здоровыми?

Мотивация учебной деятельности. Почему очень важно изучать и знать эту тему?

Ученики дают возможные варианты ответа на вопрос.

Учитель. Обобщает ответы. Формулирование темы, цели и задач урока.

Действительно, 90% информации мы получаем с помощью наших глаз. Даже народная мудрость гласит: «Лучше один раз увидеть, чем сто раз услышать». Значит, мы должны знать, как устроен глаз, каковы его особенности и какие бывают дефекты зрения.

К сожалению, здоровые глаза и хорошее зрение встречаются далеко не всегда. (Слайд 2).В России, по данным Министерства здравоохранения, более миллиона детей страдают различными заболеваниями глаз и нарушениями зрения: близорукостью, дальнозоркостью, астигматизмом. С каждым годом число таких детей растет. Поэтому специалисты придают большое значение профилактике и ранней диагностике нарушений зрения. Но прежде чем говорить о заболеваниях глаз давайте познакомимся со строением глаза.

Актуализация опорных знаний

Вопросы учащимся:

- 1. Какие оптические приборы вы знаете?
- 2. Какое изображение дает лупа?
- 3. Каковы характеристики изображения, даваемые фотоаппаратом?
- 4. Какие виды линз вы знаете?
- 5. Что такое оптическая сила линзы?

Получение новых знаний

Глаз — орган восприятия светового раздражения у человека. По форме глаз — шар диаметром 2,5 см и массой около 7-8 г. Глазное яблоко располагается в глазнице, спереди его оберегают веки. Брови предотвращают попадание в глаза пота со лба, а веки с ресницами защищают их от снега, дождя и пыли. Назначение слез — смачивать поверхность глазного яблока, чтобы она не высохла. Слезные железки за сутки вырабатывают до 1 мл слез.

Зрительный анализатор состоит из глазного яблока, проводящих путей и коры головного мозга.

Давайте рассмотрим основные элементы глаза и их функциональное назначение. Учитель показывает на модели. Затем ученики рассматривают рисунок и выполняют таблицу в тетрадях.

Глазное яблоко покрыто **белочной оболочкой** (склерой), которая защищает глаз от механических и химических повреждений. В передней части глаза белочная оболочка прозрачная и называется роговицей. Она свободно пропускает световые лучи.

Средняя оболочка – сосудистая – пронизана густой сетью кровеносных сосудов, снабжающих глазное яблоко кровью. Внутренняя поверхность сосудистой оболочки содержит черный пигмент, который поглощает световые лучи. Передняя часть сосудистой оболочки – радужка – ее цвет определяется количеством и распределением пигмента. В центре радужной оболочки находится отверстие – зрачок. Он регулирует поступление внутрь глаза лучей света. При ярком свете зрачок рефлекторно сужается, а при слабом освещении расширяется.

За зрачком расположен **хрусталик** – двояковыпуклая линза, окруженная ресничной мышцей. Всю внутреннюю часть глазного яблока заполняет **стекловидное тело** – прозрачное студенистое вещество, которое поддерживает внутриглазное давление.

Световые лучи, преломляясь в роговице, хрусталике, стекловидном теле, фокусируются на **внутренней оболочке** глазного яблока – **сетчатке.**

No	Элемент строения глаза	Функция данного элемента
1.	Склера	Защищает содержание глаза,
		обеспечивает жесткость.
2.	Роговица	Пропускает и преломляет свет
3.	Радужная оболочка	Меняет размеры зрачка, регулирует
		поступление света в глаз
4.	Зрачок	Отверстие в радужке, через которое
		проходит свет
5.	Хрусталик	Обеспечивает фокусировку лучей света на
		сетчатке
6.	Цилиарная связка	Меняет радиус кривизны хрусталика
7.	Стекловидное тело	Поддерживает форму глаза, пропускает
		свет
8.	Сосудистая оболочка	Снабжает кровью сетчатку, препятствует
		отражению света от внутренних
		поверхностей глаза
9.	Сетчатка	Содержит фоторецепторные клетки
10.	Зрительный нерв	Проводит импульсы от сетчатки в мозг
11.	«Слепое пятно»	Место на сетчатке, не обладающее
		светочувствительностью
12.	«Желтое пятно»	Область наибольшей остроты зрения

Глаз как оптическая система.

Роговица, водянистая влага, хрусталик и стекловидная тело образуют оптическую систему глаза. Сетчатка выступает в роли экрана, где формируется изображения предмета. Основным элементом оптической системы глаза является хрусталик - эластичная линзоподобное тело (двояковыпуклая линза). В зависимости от рассматриваемого предмета кривизна хрусталика способна меняться за счёт гладких мышц ресничного тела. Такое приспособление глаза называют аккомодацией.

Механизм работы оптической системы глаза следующий: лучи света от предмета, преломляясь на границе воздух – роговица, проходит через хрусталик (линзу сменяющейся оптической силой) и сдают изображение на сетчатке. Средняя оптическая сила глаза составляет: +59 диоптрий. Поскольку фокусное расстояние у такой линзы очень маленькая (17 мм), то все наблюдаемые нами объекты располагаются за двойным фокусным расстоянием. Значит, изображение на сетчатке глаза получаются уменьшенным, действительным и перевёрнутым (мозг «переворачивается» обратное изображение, и оно воспринимается как прямое).

Свет, преломляясь в оптической системе глаза, которую образуют роговица, хрусталик и стекловидное тело, дает на сетчатке действительное, уменьшенное, перевёрнутое изображение рассматриваемого предмета. Оптическая система глаза напоминает фотоаппарат.

Попробуем найти аналогии в конструкции:

- Роговица работает как передний элемент объектива, преломляя поступающий свет,
- Радужная оболочка работает в качестве диафрагмы расширяющейся или сужающейся в зависимости от требуемой экспозиции. На самом деле радужная оболочка, дающая глазам цвет, это всего лишь мышца, которая расширяется или сжимается и таким образом определяет размер зрачка.
- Зрачок объектив, а в нем хрусталик фокусирующая группа линз объектива, способная менять угол преломления света.
- Сетчатка, находящаяся на задней внутренней стенке глазного яблока, работает как пленка.
- Мозг процессор, обрабатывающий информацию.

Глаз — это воспринимающая, периферическая часть зрительного анализатора. При помощи нервных путей (зрительного нерва) он связан с мозговыми центрами, расположенными в затылочной части коры большого полушария головного мозга.

Свойства глаза.

Аккомодация — способность глаза приспосабливаться к четкому различению предметов, расположенных на разных расстояниях от глаза. Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы хрусталик под действием упругих сил увеличивает свою кривизну. Происходит изменение оптической силы глаза.

Бинокулярность зрения – способность воспринимать глубину пространства (стереоэффект).

Преимущество формирования изображения от двух источников:

- 1. Увеличивается поле зрение.
- 2. Мы можем различать, какой предмет находится ближе, а какой дальше от нас.
- 3. Мы видим предметы объёмными, а не плоскими.

Первичное закрепление знаний

Практическая работа №1. Определение бинокулярности зрения

Возьмите авторучку и держите её вертикально, посмотрите на панораму прямо за ней. Если вы сначала закроете один глаз, затем второй, то увидите, что ручка в любом случае закрывает какую-то область пространства. Но если посмотреть обоими глазами, то всё, что ранее было «спрятано», теперь вполне обозримо.

Свойства глаза по различению цветов

Самая важная часть глаза - сетчатка, так как именно здесь начинается зрительное восприятие. Как же она устроена?

В сетчатке расположены рецепторы глаза — палочки и колбочки. Палочки воспринимают форму предмета при слабом освещении, колбочки отвечают за цветное зрение. В сетчатке происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг, в зрительную зону коры больших полушарий. В этой зоне происходит различение раздражений — формы предмета, окраски, величины и т. д.

На сетчатке можно выделить два пятна:

- 1) желтое здесь сосредоточены только колбочки. Это место наилучшего видения.
- 2) слепое место выхода зрительного нерва, здесь отсутствуют фоторецепторы.

Практическая работа №2. Определение слепого пятна.

Цель: определить положение слепого пятна на сетчатке.

Ход работы:

На листе белой бумаги вы видите рисунок в виде черного кружка и крестика, расположенных на расстоянии 7 см друг от друга.

- 1. Прикройте рукой правый глаз и поместите рисунок на расстоянии 15 см от глаз. Смотрите левым глазом на крестик и медленно приближайте и удаляйте рисунок до тех пор, пока черный кружок не будет виден.
- 2. Теперь закройте левый глаз, правым смотрите на кружочек, приближая и удаляя листок, пока не будет виден крестик.

Анализ полученного результата: чем можно объяснить данное явление?

Вывод: изображение попало на слепое пятно, поэтому мы его не видим.

Проверка зрения.

Зрение проверяют в кабинете врача-офтальмолога. Проверка зрения включает исследование способности различать детали вблизи и на больших расстояниях, поля зрения (определение его дефектов) и возможности различать цвета. Остроту зрения проверяют как на большом расстоянии (зрение вдаль), так и отдельно на близком расстоянии (зрение вблизи). Для проверки остроты зрения вдаль пациенту демонстрируют набор букв или специальных символов различных размеров.

Нормальное зрение - если глаз в ненапряжённом состоянии собирает параллельные лучи в точке, лежащей на сетчатке.

Дефекты зрения.

БЛИЗОРУКОСТЬ - заболевание, когда в период интенсивной зрительной нагрузки вследствие слабости цилиарной мышцы, нарушения кровообращения в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Недостаток зрения - хорошо видны близкие предметы и плохо — отдаленные. При близорукости входящие в глаза параллельные лучи, идущие от отдаленного предмета, собираются не на сетчатке, а перед ней.

ДАЛЬНОЗОРКОСТЬ — врожденное заболевание, особенность строения глазного яблока: это либо короткий глаз, либо глаз со слабой оптикой. Недостаток зрения, мешающий ясно видеть на близком расстоянии. При дальнозоркости входящие в глаз параллельные лучи, идущие от отдаленного предмета, собираются не на сетчатке, а за ней.

Исправление дефектов зрения: близорукости при помощи рассеивающей линзы, дальнозоркости – при помощи собирающей. (*Слайд 17*)

Дальтонизм – неспособность различать цвета, если колбочки какого – либо вида оказываются с дефектом. Это расстройство зрения названо по фамилии английского химика и физика Джона Дальтона, впервые исследовавшего это явление. Дальтонизмом страдают 8% мужчин и 0,5% женщин. Одни дальтоники не воспринимают красный цвет, другие – зелёный, третьи – фиолетовый. Встречаются и такие люди, для которых мир «окрашен» только в оттенки серого.

Таблицы Рабкина. Тест на нарушение цветового восприятия. На картинке изображены цифры "1" и "3" (отвечают "13"). Люди со слепотой в красной или зелёной части спектра видят цифру "6".

Астигматизм – дефект, вызванный несогласованной работой мышц, из-за чего глаза смотрят в разные стороны. Мозг в этом случае принимает во внимание только одно изображение. Чтобы заставить работать глаз с ослабленными мышцами, ребёнку временно закрывают правильно действующий глаз. Астигматизм - особый вид оптического строения глаза. Явление врожденного иногда приобретенного характера. Обусловлен неправильностью кривизны роговицы; представляет собой не поверхность шара, а элемент вращающегося эллипсоида.

Профилактика утомления глаза.

Для профилактики утомления глаза можно использовать лечебную и/или расслабляющую гимнастику. Особенно это актуально для детей, так как до 18 лет глаз продолжает развиваться, и для людей, много времени проводящих за компьютером или перед телевизором. Упражнения для глаз достаточно просты: движения глаз вверх — вниз, вправо — влево, вращения; смотреть 5 — 10 с на близкий предмет, а затем - на дальний предмет. Важно! Правильная осанка при письме.

Зрительная гимнастика. (Слайд 21).

Оптические иллюзии.

«Мы смотрим не глазами, а мозгом»,- говорят физиологи. Зрительные обманы и иллюзии возникают из-за того, что, когда мы видим, то бессознательно рассуждаем, причём невольно вводим себя в заблуждение. Так что правильнее было бы говорить не об «обманах зрения», а об «обманах суждения».

Зрение у животных и насекомых.

- у насекомых, ракообразных и некоторых других беспозвоночных фасеточные глаза. В них нет единой сетчатки, рецепторы собраны в маленькие группы (ретинулы), каждая из которых обслуживается отдельным диоптрическим аппаратом. Понятия аккомодации, близорукости или дальнозоркости к такому глазу неприменимы.
- у самого большого в мире животного (голубого кита) самые большие глаза: величиной с футбольный мяч, около 23 см в поперечнике.
 - у орла очень высокая острота зрения он может увидеть зайца с высоты 3 км.
- у хищников объёмное стереоскопическое зрение, глаза широко расставлены в одной плоскости. Это помогает оценивать расстояние до добычи.
- у травоядных панорамное зрение, глаза расположены по бокам головы, из-за этого поле зрения намного шире, но изображение плоское, не стереоскопическое.

Контроль/самоконтроль знаний

Выполнение тестового задания

Подведение итогов урока, рефлексия

Глаз представляет собой сложную оптическую систему, работа которой зависит от слаженного взаимодействия всех его структур. Глаз обеспечивает восприятие человеком окружающей действительности. В школьные годы Ваш орган зрения испытывает значительные перегрузки в условиях длительного чтения, работы за компьютером, просмотра телевизора. При этом вы не всегда соблюдаете санитарные нормы внешнего освещения, правильного питания и правильной посадки.

Сегодняшний урок позволил вам понять, что глаз — орган нашего зрения — это серьезный оптический механизм, и как любой механизм он может, при неправильной эксплуатации давать сбои, но если какие то части в механизме поменять можно, то с органом зрения это будет сделать очень сложно, а иногда и невозможно. Можно надеяться, что теперь вы будете беречь свой орган зрения, пользоваться памятками — выполнять несложные упражнения и правила гигиены, ведь они просты, но важны.

Рефлексия

- 1. Что вам понравилось больше всего на уроке?
- 2. Как вы считаете, достигли мы цели урока?
- 3. Что нового и интересного вы сегодня узнали на уроке?
- 4. Чем ценен для вас изученный материал?
- 5. Испытываете ли вы эмоциональный подъём, чувство удовлетворения от урока?

Информация о домашнем задании

- 1. Сообщение по теме «Особенности зрения у насекомых и животных»
- 2. Практические задания по выбору учащихся