Тема занятия: Реакции в растворах (решение задач)

Порядок	Алгоритм работы и ресурсы
действий	
1	Запишите тему занятия: Реакции в растворах (решение задач)
2	Изучите элементы теории и примеры решённых задач:
	В задачах на данную тему приготовление или смешивание
	растворов сопровождается протеканием химической реак-
	ции (реакций). При нахождении массы конечного раствора
	в этом случае необходимо обращать внимание на природу
	продуктов реакции:
	1. Если в результате реакции образуется газ или осадок (или
	газ и осадок одновременно), то масса конечного раствора
	меньше суммы масс смешиваемых растворов (растворов и
	веществ) на массу газа и осадка:
	$m(p-pa) = m_1(p-pa) + m_2(p-pa) + m(газа) - m(осадка).$
	Или:
	$m(p-pa) = m_1(p-pa) + m(в-ва) - m(газа) - m(осалка).$
	2. Если при смешивании растворов (растворов и веществ)
	газ или осадок не выделяются, то масса конечного раствора в
	точности равна сумме масс всех смешиваемых компонентов:
	$m (p-pa) = m_1(p-pa) + m_2(p-pa) +,$
	$m(p-pa) = m_1(p-pa) + m(B-Ba).$
	Массу конечного раствора можно найти суммированием
	масс всех веществ, находящихся в растворе (включая воду!),
	но при этом массы газа или осадка не вычитаются.
	ПРИМЕР 1. В воде массой 80 г растворили натрий мас-
	сой 10 г. Найдите массовую долю шелочи в полученном ра-
	створе.
	Решение
	Записываем уравнение реакции:
	оанисываем уравнение реакции.

$$0,435$$
 моль $0,435$ моль x y
 $2\text{Na} + 2\text{H}_2\text{O} = 2\text{NaOH} + \text{H}_2\uparrow$.
 2 моль 2 моль 1 моль
 $M(\text{Na}) = 23$ г/моль;
 $M(\text{NaOH}) = 40$ г/моль;
 $M(\text{H}_2) = 2$ г/моль.

Находим:

$$n(\text{Na}) = \frac{m(\text{Na})}{M(\text{Na})} = \frac{10}{23} = 0,435 \text{ (моль)}.$$

Из уравнения реакции следует:

$$x = n(\text{NaOH}) = 0,435 \text{ (моль)};$$
 $m(\text{NaOH}) = 0,435 \cdot 40 = 17,4 \text{ (г)};$
 $y = n(\text{H}_2) = \frac{0,435 \cdot 1}{2} = 0,2175 \text{ (моль)};$
 $m(\text{H}_2) = 0,2175 \cdot 2 = 0,435 \text{ (г)}.$

Рассчитываем массовую долю NaOH:

$$w(\text{NaOH}) = \frac{m(\text{NaOH})}{m(\text{p-pa NaOH})} = \frac{m(\text{NaOH})}{m(\text{H}_2\text{O}) + m(\text{Na}) - m(\text{H}_2)};$$
$$w(\text{NaOH}) = \frac{17.4}{80 + 10 - 0.435} = \frac{17.4}{89.57} = 0.194 (19.4\%).$$

По-другому массу конечного раствора можно найти суммированием масс полученного NaOH (17,4 г) и непрореагировавшей воды:

$$m(H_2O)_{\text{neuro}} = 80 - 0,435 \cdot 18 = 72,17 \text{ (r)}.$$

Имеем:

$$m(p-pa NaOH) = 17,4+72,17 = 89,57 (r).$$

Ответ: w(NaOH) = 19,4%.

В заданиях на эту тему встречаются задачи на изменение массы находящихся в равновесии сосудов в результате протекания химических реакций.

ПРИМЕР 2. На весах уравновешены два сосуда с растворами NaOH и HNO₃(разб.). В первый сосуд добавили цинк массой 26 г, металл полностью растворился. Какую массу меди нужно добавить во второй сосуд для сохранения равновесия (растворимостью газов можно пренебречь)?

Решение

$$M(Zn) = 65 \text{ г/моль};$$

 $M(Cu) = 64 \text{ г/моль};$
 $M(H_2) = 2 \text{ г/моль};$
 $M(NO) = 30 \text{ г/моль}.$

1. В сосуде с NaOH протекает реакция, в результате которой выделяется водород:

$$Z_{1} = 2N_{1} + 2N_{2} + 2$$

Находим массу водорода:

$$n(Zn) = \frac{m(Zn)}{M(Zn)} = \frac{26}{65} = 0,4 \text{ (Моль)};$$
$$x = n(H_2) = \frac{0,4 \cdot 1}{1} = 0,4 \text{ (Моль)};$$

$$m(H_2) = n(H_2) \cdot M(H_2) = 0.4 \cdot 2 = 0.8 \text{ (r)}.$$

Масса сосуда с NaOH возросла на массу цинка и уменьшилась на массу водорода:

$$\Delta m(I) = m(Zn) - m(H_2) = 26 - 0.8 = 25.2 (r).$$

2. В сосуде с HNO₃(разб.) при добавлении меди протекает реакция:

$$y$$
 моль z $3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO^{\uparrow} + 4H_2O$. 2 моль 2 моль

Для сохранения равновесия необходимо, чтобы и во втором сосуде изменение массы с учетом массы добавленной меди и выделяющегося газа (NO) составило 25,2 г:

$$\Delta m(\mathrm{II}) = m(\mathrm{Cu}) - m(\mathrm{NO}) = 25.2 \; (\mathrm{r}).$$

Обозначим химическое количество меди *у* моль. Тогда имеем:

$$m(Cu) = n(Cu) \cdot M(Cu) = 64y (r);$$

 $n(NO) = z = \frac{2 \cdot y}{3} = 0,667y (моль);$
 $m(NO) = n(NO) \cdot M(NO) = 0,667y \cdot 30 = 20y (r).$

Получаем:

$$\Delta m(II) = m(Cu) - m(NO) = 64y - 20y = 44y.$$

Поскольку $\Delta m(I) = \Delta m(II)$, получаем:

$$25,2 = 44y;$$

 $y = 0,573 \text{ (моль)};$
 $m(Cu) = n(Cu) \cdot M(Cu) = 0,573 \cdot 64 = 36,7 \text{ (г)}.$

Ответ: m(Cu) = 36,7 r.

При взаимодействии различных классов соединений в общем случае могут образоваться соль одного состава (средняя, кислая или основная) или же смесь кислой и средней соли или средней и основной соли (кислые и основные соли в растворе совместно не существуют)¹.

Решать такие задачи нужно по следующей схеме:

- 1) рассчитываем химические количества реагентов;
- 2) записываем уравнения возможных реакций между реагентами;
- 3) на основании анализа химических количеств реагентов и их стехиометрических коэффициентов делаем вывод о составе продуктов.

ПРИМЕР 18-1.* Оксид фосфора(V) массой 7,1 г полностью растворили в растворе гидроксида калия массой 56 г с массовой долей щелочи 20 %. Найдите состав и массовую долю соли в полученном растворе.

Решение

9man 1

$$M(P_2O_5) = 142 \text{ г/моль}; M(KOH) = 56 \text{ г/моль};$$

$$n(P_2O_5) = \frac{m(P_2O_5)}{M(P_2O_5)} = \frac{7.1}{142} = 0,05$$
 (моль);

$$m(\text{KOH}) = m(\text{p-pa KOH}) \cdot w(\text{KOH}) = 56 \cdot 0,2 = 11,2 \text{ (r)};$$

$$n(\text{KOH}) = \frac{m(\text{KOH})}{M(\text{KOH})} = \frac{11,2}{56} = 0,2 \text{ (моль)}.$$

Эman 2

$$P_{2}O_{5} + 2KOH + H_{2}O = 2KH_{2}PO_{4}.$$
 (18-1)

$$P_2O_5 + 4KOH = 2K_2HPO_4 + H_2O_4$$
 (18-2)

$$P_2O_5 + 6KOH = 2K_3PO_4 + 3H_2O.$$
 (18-3)

9man 3

Согласно данным задачи (см. этап 1), находим отношение химических количеств щелочи и оксида:

$$n(KOH): n(P_2O_5) = 0.2: 0.05 = 4:1.$$

Видим (см. этал 2), что такое отношение отвечает стехиометрическим коэффициентам для КОН и P_2O_5 в уравнении (18-2). Следовательно, образуется гидрофосфат калия.

Находим массу и массовую долю соли в растворе.

$$_{1}^{0,05 \text{ моль}}$$
 $_{2}^{0}$ $_{3}^{0}$ $_{4}^{0}$ $_{4}^{0}$ $_{5}^{0}$ $_{5}^{0}$ $_{4}^{0}$ $_{5}^{0$

Ответ: $w(K_2HPO_4) = 27.6 \%$.

Рассмотрим пример решения задачи, когда образуется смесь солей.

ПРИМЕР 18-2.* Оксид фосфора(V) массой 14,2 г полностью растворили в растворе КОН массой 140 г с массовой долей щелочи 20 %. Определите химические количества полученных солей.

Решение

Находим:

$$n(P_2O_5) = \frac{14,2}{142} = 0,1$$
 (моль);
 $m(KOH) = 140 \cdot 0,2 = 28$ (г);
 $n(KOH) = \frac{28}{56} = 0,5$ (моль);
 $n(KOH) : n(P_2O_5) = 0,5 : 0,1 = 5 : 1.$

Видим, что такому отношению химических количеств КОН и P_2O_5 не удовлетворяет ни одно из уравнений реакций (18-1)—(18-3) (см. пример 18-1).

Что делать дальше?

Можно заметить, что коэффициент 5 для КОН лежит в промежутке между стехиометрическими коэффициентами для КОН, равными 4 и 6, в уравнениях реакций (18-2) и (18-3). Это как раз и свидетельствует о том, что образуется смесь солей K_2HPO_4 и K_3PO_4 .

Дальнейшие расчеты можно проводить двумя способами.

Вариант 1 (составление системы двух уравнений)

Выписываем уравнения реакций (18-2) и (18-3):

$$0,1 \text{ моль} \begin{cases} P_2O_5 + 4KOH \\ 1_{\text{моль}} \\ y \\ P_2O_5 + 6KOH \\ 1_{\text{моль}} \end{cases} = 2K_2HPO_4 + H_2O$$

$$0,1 \text{ моль}$$

$$0,5 \text{ моль}$$

$$0,5 \text{ моль}$$

$$0,2 \text{ моль}$$

$$0,2 \text{ моль}$$

$$0,3 \text{ моль}$$

Составляем систему двух уравнений по химическим количествам КОН и Р₂О₅:

$$\begin{cases} x + y = 0,1, \\ 4x + 6y = 0,5. \end{cases}$$

Находим:

$$x = 0.05$$
 моль, $y = 0.05$ моль.

Из уравнений реакций следует:

$$n_1 = n(K_2 \text{HPO}_4) = \frac{2x}{1} = 2 \cdot 0,05 = 0,1 \text{ (моль)};$$
 $n_2 = n(K_3 \text{PO}_4) = \frac{2y}{1} = 2 \cdot 0,05 = 0,1 \text{ (моль)}.$

Вариант 2

Допустим, образовался дигидрофосфат калия:

$$0.1$$
 моль 0.5 моль 0.2 моль $P_2O_5 + 2KOH + H_2O = 2KH_2PO_4$.

Видим, что КОН взят с избытком; соли образовалось 0,2 моль, а избыточное химическое количество КОН равно

$$0.5 - 0.1 \cdot 2 = 0.3$$
 моль.

В избытке щелочи протекает вторая реакция, в которую вступают 0,2 моль КН₂РО₄ и 0,3 моль КОН:

$$KH_2PO_4 + KOH = K_2HPO_4 + H_2O$$

В этой реакции КОН опять находится в избытке; образуется 0,2 моль K_2HPO_4 , а в избытке остается

$$0.3 - 0.2 = 0.1$$
 моль КОН.

В избытке щелочи протекает третья реакция, в которую вступают 0,2 моль K, HPO₄ и 0,1 моль КОН:

$$0.2$$
 моль 0.1 моль 0.1 моль $K_2HPO_4 + KOH = K_3PO_4 + H_2O_4$

В этой реакции в избытке находится K_2HPO_4 ; образуется 0,1 моль K_3PO_4 и останется 0,2-0,1=0,1 моль K_2HPO_4 . Ответ: $n(K_2HPO_4) = n(K_3PO_4) = 0,1$ моль.

Решите следующие задачи самостоятельно:

3

- 1. К раствору объемом 500 см³ с w(BaCl₂) = 5 % (ρ = 1,04 г/см³) прибавили 44,5 см³ раствора K₂CO₃ (w = 25 %, ρ = 1,24 г/см³). Найдите массовые доли веществ в полученном растворе. (0,94 % BaCl₂; 2,68 % KCl) I
- 2. К раствору объемом 250 см³ с w(NH₄Cl) = 24 % (ρ = 1,07 г/см³) прибавили 224 г раствора NaOH (w = 25 %). Полученный раствор прокипятили до полного удаления аммиака, при этом также испарилось 71,1 см³ воды. Найдите массовые доли веществ в конечном растворе. (2 % NaOH; 17,6 % NaCl)
- 3. Массовые доли бромида и хлорида калия в растворе одинаковы. Для полного осаждения солей из 1000 г раствора

- к нему нужно добавить 1 дм³ раствора AgNO₃ с w = 8 % (ρ = 1,07 г/см³). Определите массовые доли солей в исходном растворе. (2,307 %)
- 4. К раствору $BaC1_2$ массой 416Γ (w = 10 %) прилили избыток раствора $Na_2CO_3 c$ w = 14 %. Осадок отфильтровали, а к фильтрату добавляли раствор HC1 (w = 5 %) до прекращения вы деления газа. Определите массу раствора карбоната, если раствора кислоты было израсходовано 438Γ . ($378,6 \Gamma$.)
- 5. На весах уравновешены два стакана, в одном содержится соляная кислота, в другом раствор КОН. В стакан с КОН добавили 8 г нитрата аммония и сосуд прокипятили до полного удаления газа (вода не испарялась). Какую массу CaCO₃ надо добавить в раствор НС1, чтобы восстановить равновесие? (11,25 г.)
- 6. К раствору серной кислоты массой 200 г прилили 1040 г раствора $BaC1_2(w=10~\%)$. Выпавший осадок отфильтровали, а для полной нейтрализации оставшегося фильтрата нужно 250 см³ раствора $NaOH(w=25~\%, \rho=1,28~\text{г/см}^3)$. Найдите массовую долю кислоты в исходном растворе. (49 %)
- 7. Какую массу натрия нужно добавить к 200 см³ раствора NaOH (w = 10 %, $\rho = 1,1 \text{ г/см}^3$), чтобы получить раствор с w(NaOH) = 20 %? Ответ дайте с точностью до сотых долей грамма. (14,21 г.)
- 8. Какую массу раствора с $w(KHCO_3) = 5 \%$ надо прибавить к 200 г раствора с w(HCI) = 10 %, чтобы понизить массовую долю HC1 в два раза (растворимостью CO, пренебречь)? (149 г.)
- 9. Раствор какой массы с $w(Ba(OH)_2) = 12,0 \%$ следует добавить к раствору H_2SO_4 массой $89,2 \Gamma$ (w = 21,2 %), чтобы получить раствор с $w(H_2SO_4) = 11,8 \%$? (50,1 Γ .)
- 10. Приготовили два раствора Na_2CO_3 . Если смешать 100 г первого и 150 г второго растворов, то при действии H_2SO_4 на эту смесь образуется 5,82 дм³ (н.у.) газа. Если же смешать 150 г первого и 100 г второго растворов, то под действием H_2SO_4 получили 4,70 дм³ (н.у.) газа. Найдите w(Na_2CO_3) во втором растворе. (15,3 %)
- 11. В результате частичного разложения H_2O_2 в растворе масса раствора уменьшилась на 10,0% и образовался раствор с $w(H_2O_2) = 32,5\%$. Найдите $w(H_2O_2)$ в исходном растворе. (50,5%)
- 12. Рассчитайте массовые доли веществ в растворе, полученном при растворении 134,4 объема HC1 (н.у.) в одном объеме раствора K_2CO_3 (w=40~%; $\rho=1,38~\Gamma/cm^3$). Растворимостью CO_2 в воде можно пренебречь. (29,58 % KC1; 13,24 % KHCO $_3$)
- 13. Газообразную смесь (н.у.), полученную после сгорания 18,368 дм³ (н.у.) смеси NH₃ и O₂ за счет содержащегося в смеси кислорода, пропустили последовательно через 49 г раствора с $w(H_3PO_4) = 20\%$, а затем над раскаленной медью. При пропускании над медью объем газа не изменился и составил 4,48 дм³ (н.у.). Найдите массовые доли солей в растворе, образовавшемся после

пропускания газов в раствор фосфорной кислоты. (18,03 % $NH_4H_2PO_4$; 5,17 % (NH_4) $_2HPO_4$)

14. В растворе с $w(H_2SO_4) = 98,0$ % растворили при нагревании медь, вследствие чего массовая доля кислоты снизилась до 86,5 %. Вычислите $w(CuSO_4)$ в полученном растворе. (9.39 %)

Желаю вам успехов и крепкого здоровья.

Код доступа:

https://meet.google.com/gij-tqvz-meo